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Abstract 
Constructing certifiably reliable software systems is 
difficult. Deductive program synthesis techniques (Flener 
1995, Manna and Waldinger 1980) can currently be used to 
construct small software systems or to organize small sets of 
software components in a reliable manner. In order for 
synthesis techniques to be applicable to real-world problems 
outside the experimental laboratory, they must be 
inexpensive relative to manual techniques. The difficulty 
and expense in constructing software synthesis systems 
currently precludes the use of these techniques in many 
instances. 

Amphion and Meta-Amphion 
Amphion (Stickel, et al. 1994) is a deductive synthesis 
system that has been used to construct programs in the 
domains of celestial mechanics and avionics. The 
experiences gained in the Amphion system mirror 
experiences in other synthesis systems. Amphion is a 
domain-independent system that is tailored to a domain in 
part through the creation of a declarative domain theory. 
Problem specifications are solved by programs constructed 
of sequences of calls to software components. Program 
construction is entirely automated. Programs have been 
generated that are currently in use by space scientists 
planning observations for the Cassini mission to Saturn 
(Roach and Van Baalen 1996, Roach, Lowry, and 
Pressburger 1995). 
 
An Amphion domain theory is written in first-order logic 
and relates abstract, specification-level functions and 
predicates to concrete, implementation-level components. 
Specifications for programs are also written in first-order 
logic and take the form Forall (inputs) Exists (outputs) 
({properties}). A general-purpose resolution theorem 
prover finds ground instances of the existential variables 
for which the set of properties hold. These ground 
instances form functional terms that are translated into a 
target language compatible with the existing software 
components. 
 
While it is not particularly difficult to create a declarative 
domain theory for Amphion that captures the relationships 
between the abstract and the concrete, the performance of 
the general-purpose resolution theorem prover quickly 

degrades due to the exponential behavior of the required 
search. Thus, a naive domain theory can only be used to 
construct simple programs. In order to synthesize non-
trivial programs, it is necessary to tune the domain theory. 
Tuning a domain theory consists of rewriting axioms to 
take advantage of knowledge of the implementation of the 
theorem prover or incorporating specialized inference 
mechanisms (such as decision procedures) that are tied 
directly to the theorem prover. Both of these methods 
require a high degree of expertise, a great deal of time, and 
are quite difficult. While the construction of decision 
procedures can be automated to some extent (Van Baalen 
and Roach 1998, Roach, Van Baalen, and Lowry 1997, 
Roach 97), the integration of these procedures with the 
general-purpose theorem prover used in Amphion has been 
difficult and un-maintainable. 

Difficulties in Program Synthesis 
In the past thirty years, a great deal of progress has been 
made in the development of program synthesis systems 
based on theorem proving, transformations, and logic 
programming. However, in spite of this progress, these 
techniques are not in the mainstream of software 
development. Formal program synthesis techniques, at 
least with the current synthesis technologies, are not 
appropriate for all software development situations. The 
characteristics of inappropriate situations include having 
little potential for reuse (to amortize the cost of 
constructing the synthesis system) and having a domain or 
class of problems that are not well understood.  
 
In situations where it is necessary to prototype a system in 
order to answer fundamental questions about the capability 
of an approach or to explore domain knowledge, it is much 
more difficult to construct a synthesis system than to 
construct programs by hand. Many market-driven software 
systems fall into this category. Such systems are inherently 
difficult to formalize. While some argue that the lack of 
formalization is a deficiency on the part of program 
developers, it is frequently a necessity. It may be that the 
cost of formalizing a specification is too high relative to 
the cost of having a human interpret an informal 
specification. The translation between informal and formal 
(a task we assume to require human oversight) may be 



 

 

faster at lower levels of abstraction for some problems. 
This occurs when relatively simple ideas expressed 
informally become difficult to formalize.  
 
Additionally, many synthesis techniques scale badly. 
Deductive techniques have exponential behavior. Thus, 
while they may work reasonably well for small problems, 
they do not work for large problems. There are approaches 
to addressing this problem (Roach 1997, Srinivas and 
McDonald 1996, Smith 1991); however, it is still difficult 
to reuse the work done in one domain to solve problems in 
another domain. 

The future of program synthesis 
By looking at the successes in program synthesis, it is 
reasonable to suggest characteristics of situations where 
synthesis is appropriate. In order to become a mainstream 
technique, synthesis must be advantageous either by 
making the software faster to produce, cheaper to produce 
and maintain, or of higher quality. The mechanisms for 
achieving this include 
 

a) producing code faster via synthesis than by hand 
by automating tedious details of development; 

b) producing code of higher quality or of higher 
certification than hand-development;  

c) reducing the level of expertise required for 
practitioners to construct software. 

 
The properties of systems amenable to economic 
application of synthesis fall into two categories: the simple 
and the complex. With simple systems, synthesis relieves 
programmers of tedious and repetitive programming tasks. 
Just as compilers relieved programmers of the task of 
allocating and managing storage, synthesis systems can 
alleviate the cumbersome tasks of managing tedious tasks. 
One of the advantages of Amphion’s synthesis system is 
that a simple algorithm is implemented in a syntactically 
correct form. One approach to using Amphion is to create a 
program that solves part of a problem, then hand-modify 
the resulting code to complete the system. The tedious 
work of variable declarations, type checking, and matching 
parameters and arguments when combining components is 
handled by Amphion. The less-easily specified parts of the 
system (such as “display the date and time in a readable 
font out of the way of interesting parts of the scene”) are 
coded by hand. 
 
Humans have difficulty formulating plans in complex 
systems where it is necessary to account for a large number 
of interactions (Dorner 1996). It may be theoretically 
possible to predict the effect of some action on a system, 
but the large number of competing issues prevents humans 
from choosing an appropriate action. In software 
development, these situations may arise from the 
interactions of components. If the interactions can be 
specified formally, it may be possible for synthesis systems 

to better manage the details of many interactions and 
constraints.  
 
While correctness is not ensured solely by the construction 
of correctness proofs, such proofs can go a long way in 
convincing us that the software will behave as intended. 
Proving properties about arbitrary programs is difficult. It 
may be easier to prove properties are hold if we control the 
construction of the system rather than take arbitrary 
programs and attempt to prove properties (Fischer 2001). 
 

Conclusion 
In order to reduce the cost of building synthesis systems, 
the following must be achieved.  
 

• We must be able to reuse knowledge and theories. 
• We must be able to reuse synthesis tools and 

techniques. 
• We must have a workforce familiar with 

techniques and their application. 
 
Although several systems under development have 
attempted to address the first two issues, it is still difficult 
to port a knowledge base from one application to another. 
Many interesting and useful techniques have been 
developed, but incorporation of one technique into a 
different system is very difficult. Just as component 
libraries have facilitated the construction of object-oriented 
systems, we must construct synthesis components that can 
be matched and tailored to developing systems.  
 
Finally, few computer science and software engineering 
professionals are trained to use formal techniques. The 
Software Engineering Body of Knowledge (SWEBOK 
2001) composed by the IEEE does not have a chapter on 
formal methods. Most software engineering textbooks (see 
for example (Pfleeger 2001, Pressman 2000, Sommerville 
1999)) make only passing mention of formal methods. Few 
software engineers are aware of the utility of synthesis 
techniques.  
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